A LIMIT THEOREM FOR THE MOMENTS OF SUMS OF INDEPENDENT RANDOM VARIABLES

BY JEREMY BERMAN

ABSTRACT

For $n \ge 1$, let $S_n = \sum X_{n,i}$ $(1 \le i \le r_n < \infty)$, where the summands of S_n are independent random variables having medians bounded in absolute value by a finite number which is independent of n. Let f be a nonnegative function on $(-\infty, \infty)$ which vanishes and is continuous at the origin, and which satisfies, for some $\alpha > 0$, $f(x) \le f(tx) \le t^{\alpha}f(x)$ for all $t \ge 1$ and all values of x.

THEOREM. For centering constants c_n , let $S_n - c_n$ converge in distribution to a random variable S. (A) In order that $Ef(S_n - c_n)$ converge to a limit L, it is necessary and sufficient that there exist a common limit

$$R = \lim_{t \to \infty} \frac{\overline{\lim}}{\overline{\lim}_{n \to \infty}} \sum_{i=1}^{r_n} \int f(X_{n,i}) I(|X_{n,i}| > t).$$

(B) If L exists, then $L < \infty$ if and only if $R < \infty$, and when L is finite, L = Ef(S) + R.

Applications are given to infinite series of independent random variables, and to normed sums of independent, identically distributed random variables.

§0. Introduction

A weak moment function is a nonnegative function f on $(-\infty, \infty)$ which vanishes and is continuous at the origin, which is monotone on each of the intervals $(-\infty, 0]$ and $[0, \infty)$, and which satisfies for some $\alpha > 0$

$$(0.1) f(tx) \le t^{\alpha} f(x) t \ge 1, \quad -\infty < x < \infty.$$

An array of random variables is median-bounded if some finite interval contains a median of each variable of the array.

We prove the following limit theorem, in which $S_n = \sum X_{n,i}$ $(1 \le i \le r_n)$,

Received February 14, 1978

 $\{c_n, n \ge 1\}$ is a sequence of constants, S is a random variable, and $\stackrel{2}{\Rightarrow}$ denotes convergence in distribution.

THEOREM 0. Let the array $\{X_{n,i}; 1 \le i \le r_n\}$ be row-wise independent and median-bounded, and let $S_n - c_n \stackrel{\mathfrak{D}}{\to} S$. Let f be a weak moment function.

(A) In order that $Ef(S_n - c_n)$ converge to a limit L, it is necessary and sufficient that there exists a common limit

(0.2)
$$R = \lim_{t \to \infty} \overline{\lim_{n \to \infty}} \sum_{i=1}^{r_n} \int_{|X_{n,i}| > t} f(X_{n,i}).$$

(B) Suppose that the limit L exists. Then $L < \infty$ if and only if $R < \infty$, and when L is finite,

$$L = Ef(S) + R.$$

By the existence of a "common limit" in (0.2), we mean, of course, that $\lim_{t\to\infty} \underline{\lim}_{n\to\infty}$ and $\lim_{t\to\infty} \overline{\lim}_{n\to\infty}$ of the sum in (0.2) are equal, with R denoting their common value.

In \$1 we prove some preliminary lemmas, in \$2 we prove Theorem 0, and in \$3 we consider applications to infinite series of independent random variables and to normed sums of independent, identically distributed random variables.

§1. Preliminary lemmas

LEMMA 1.1. Let f be a weak moment function, let $\alpha > 0$ satisfy (0.1), and let x and y be any real numbers. Then

- (i) $f^{1/\alpha}(x+y) \le f^{1/\alpha}(x) + f^{1/\alpha}(y)$.
- (ii) Let $0 < \varepsilon < 1$ and $|x| \le \varepsilon |y|$. Then

$$(1-\varepsilon)^{\alpha}f(y) \leq f(x+y) \leq (1+\varepsilon)^{\alpha}f(y).$$

PROOF. (i) If x + y = 0, the inequality is obvious. The cases x + y < 0 and x + y > 0 are similar, and we consider the case x + y > 0 only. Suppose first that x > 0 and y > 0.

The inequality (0.1) may be written

$$(1.1) s^{\alpha}f(z) \leq f(sz), 0 < s \leq 1, -\infty < z < \infty.$$

Letting s = x/x + y, z = x + y, and taking α th roots yields

$$x(x + y)^{-1}f^{1/\alpha}(x + y) \leq f^{1/\alpha}(x).$$

Interchanging x and y and summing the results yields (i).

Next suppose that one of the variables, say x, is nonpositive. Then $0 < x + y \le y$, and the inequality follows from the monotonicity of $f^{1/\alpha}$ on $[0, \infty)$.

(ii) Suppose first that $y \ge 0$. Then $0 \le (1 - \varepsilon)y \le x + y \le (1 + \varepsilon)y$, implying $f\{(1 - \varepsilon)y\} \le f(x + y) \le f\{(1 + \varepsilon)y\}$, and applications of (1.1) and (0.1) yield the asserted inequalities. The case $y \le 0$ is similar.

LEMMA 1.2. For any integer $m \ge 1$ there exists a polynomial $\psi_m(x)$ having nonnegative coefficients such that $\psi_m(0) = 0$ and such that for any finite sequence $\{X_i\}$ of independent random variables having finite mth moments

$$(1.2) \left| E\left(\sum_{i} X_{i}\right)^{m} \right| \leq \sum_{i} \left| EX_{i}^{m} \right| + \psi_{m} \left(\max_{1 \leq k < m} \sum_{i} \left| EX_{i}^{k} \right| \right).$$

(The argument of ψ_m in (1.2) is intended to be 0 when m = 1.)

PROOF. We shall show that the sequence $\{\psi_m, m \ge 1\}$ defined recursively by

$$\psi_1(x) = 0, \qquad \psi_m(x) = \sum_{a=1}^{m-1} {m \choose a} x \{ x + \psi_a(x) \}$$

does the job. We proceed by induction on m.

 $\psi_1(x)$ certainly has the required property. Suppose that $\psi_a(x)$ has it when $1 \le a < m$. To show that ψ_m has it, it suffices to show that (1.2) holds for sequences of the form $\{X_{i_0} \ 0 \le i \le r\}$ where $X_0 = 0$ and $r \ge 1$. Let

$$T_i = \sum_{i=0}^i X_i, \qquad 0 \le i \le r;$$

$$u = \sum_{i=0}^{r} |EX_{i}^{m}|; \qquad v = \max_{1 \le k < m} \sum_{i=0}^{r} |EX_{i}^{k}|.$$

We must show that

$$(1.3) |ET^m_r| \leq u + \psi_m(v).$$

Now

$$(x + y)^m - y^m = x^m + \sum_{a=1}^{m-1} {m \choose a} x^{m-a} y^a.$$

Letting $x = X_{i+1}$, $y = T_i$, and taking expectations yields

$$ET_{i+1}^m - ET_i^m = EX_{i+1}^m + \sum_{a=1}^{m-1} {m \choose a} EX_{i+1}^{m-a} ET_i^a.$$

By the induction hypotheses, for $1 \le a \le m - 1$ we have

$$|ET_i^a| \leq \sum_{j=0}^j |EX_j^a| + \psi_a \left(\max_{1 \leq k < a} \sum_{j=0}^i |EX_j^k| \right)$$

$$\leq v + \psi_a(v).$$

Hence

$$ET_{i+1}^m - ET_i^m \le |EX_{i+1}^m| + \sum_{a=1}^{m-1} {m \choose a} |EX_{i+1}^{m-a}| \{v + \psi_a(v)\}.$$

Summing over $0 \le i \le r - 1$ leads (crudely) to

$$ET_r^m \leq u + \sum_{a=1}^{m-1} {m \choose a} v\{v + \psi_a(v)\} = u + \psi_m(v).$$

The same argument applied to the sequence $\{-X_i, 0 \le i \le r\}$ leads to (1.3) and completes the proof.

From now on, Σ denotes $\Sigma_{i=1}^n$ and \bigcup denotes $\bigcup_{i=1}^n$.

Truncation Notation. We denote

$$X_{n,i}(t) = X_{n,i}I_{(|X_{n,i}| \le t)}, \qquad X'_{n,i}(t) = X_{n,i}I_{(|X_{n,i}| > t)};$$

$$S_n(t) = \sum X_{n,i}(t)$$
 $S'_n(t) = \sum X'_{n,i}(t);$

SO

$$S_n = S_n(t) + S_n'(t).$$

LEMMA 1.3. Let the array $\{X_{n,i}; 1 \le i \le r_n, n \ge 1\}$ be row-wise independent and median-bounded, and let $S_n - c_n \stackrel{\mathfrak{D}}{\longrightarrow} S$. Then

- (i) $\lim_{t\to\infty} \sup_{n\geq 1} \sum P\{|X_{n,i}| > t\} = 0$ and for all values of t sufficiently large,
- (ii) $\sup_{n\geq 1} \operatorname{Var} S_n(t) < \infty$,

distributed symmetric variables.

(iii) $\sup_{n\geq 1} |ES_n(t)-c_n| < \infty$.

PROOF. (i) Let $d_{n,i}$ be the median of $X_{n,i}$ of smallest absolute value. Then for some $C < \infty$, $|d_{n,i}| < C$ for every i and n. By symmetrization inequalities[†] in [1], we have for every t > C

$$\sum P\{|X_{n,i}| > t\} \le \sum P\{|X_{n,i} - d_{n,i}| > t - C\} \le 2 \sum P\{|X_{n,i}^s| > t - C\}$$

$$(1.4) \qquad \qquad \le -2\log\{1 - 2P\{|S_n^s| > t - C\}\},$$

^{*} See page 149 of [1], inequality (5.8) and the obvious generalization of (5.10) to nonidentically

where s denotes symmetrization. Now $S_n^s = (S_n - c_n)^s \stackrel{\mathcal{D}}{\to} S^s$. Hence the last term of (1.4) converges to 0 as $t \to \infty$ uniformly in n, and (i) follows.

By (i), for all values of t sufficiently large,

(1.5)
$$\sum P\{|X_{n,i}| > t\} \le \frac{1}{4} \quad \text{for all } n \ge 1.$$

We shall show that (ii) and (iii) hold for such values of t. We fix such a value.

(ii) Let $\sigma_n^2 = \operatorname{Var} S_n(t)$. We first show that it is impossible both that $\sigma_n \to \infty$ and that $c_n \le ES_n(t)$ for every $n \ge 1$. Indeed, suppose the contrary. Then $\sigma_n^{-1} \{ S_n(t) - ES_n(t) \} \stackrel{\text{deg}}{\to} Z$, where Z has a standard normal distribution, and also, for any M > 0,

$$P\{S_n - c_n \le M\} \le P\{S_n - ES_n(t) \le M\} \le P\{S_n \ne S_n(t)\} + P\{S_n(t) - ES_n(t) \le M\}$$
$$\le \frac{1}{4} + P\{\sigma_n^{-1}[S_n(t) - ES_n(t)] \le \sigma_n^{-1}M\}$$

where we applied (1.5) in the last step. Letting $n \to \infty$ yields $P\{S \le M\} \le \frac{1}{4} + P\{Z \le 0\} = 3/4$ for arbitrarily large values of M, and we arrive at a contradiction.

Applying what we have just proved to all subarrays of $\{X_{n,i}\}$ and of $\{-X_{n,i}\}$ yields (ii).

(iii) We first show the impossibility of $ES_n(t) - c_n \to \infty$. Suppose that this convergence holds. By (ii), some $0 < B < \infty$ satisfies $\sup_{n \ge 1} \operatorname{Var} S_n(t) \le \frac{1}{4}B^2$. For any M > 0 and for all values of n sufficiently large, we have

$$P\{S_{n} - c_{n} \leq -B + M\} \leq P\{S_{n} - c_{n} \leq -B + ES_{n}(t) - c_{n}\} = P\{S_{n} - ES_{n}(t) \leq -B\}$$

$$\leq P\{S_{n} \neq S_{n}(t)\} + P\{S_{n}(t) - ES_{n}(t) \leq -B\}$$

$$\leq \frac{1}{4} + B^{-2} \text{Var } S_{n}(t) \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Letting $n \to \infty$, we obtain $P\{S \le -B + M\} \le \frac{1}{2}$ for arbitrarily large values of M, which is a contradiction.

Applying the foregoing result to all subarrays of $\{X_{n,i}\}$ and of $\{-X_{n,i}\}$ yields (iii).

§2. The proof of Theorem 0

We now prove Theorem 0. f is obviously continuous everywhere, and it follows that if $P\{|S|=t\}=0$, then

$$\int_{|S_n-c_n|\leq t} f(S_n-c_n) \to \int_{|S|\leq t} f(S) \quad \text{as } n\to\infty.$$

From here it is clear that Theorem 0 is true if we replace (0.2) by

$$Q = \lim_{t \to \infty} \overline{\lim_{n \to \infty}} \int_{|S_n - c_n| > t} f(S_n - c_n)$$

and if all further occurrences of R are replaced by Q.

Hence, it remains to prove that

(2.1)
$$Q$$
 exists if and only if R exists, and then $Q = R$.

Let

$$Q_n(t) = \int_{|S_n - c_n| > t} f(S_n - c_n), \qquad R_n(t) = \sum_{|X_{n,i}| > t} \int_{|X_{n,i}| > t} f(X_{n,i}),$$

$$Q = \lim_{t \to \infty} \lim_{n \to \infty} Q_n(t), \qquad \bar{Q} = \lim_{t \to \infty} \overline{\lim_{n \to \infty}} Q_n(t),$$

and similarly define \underline{R} and \overline{R} with respect to $R_n(t)$.

To prove (2.1), it suffices to prove that

$$Q = R$$
 and $\bar{Q} = R$.

We shall first prove that $Q \leq \underline{R}$ and $\overline{Q} \leq \overline{R}$, and later that $Q \geq \underline{R}$ and $\overline{Q} \geq \overline{R}$.

 $Q \subseteq \underline{R}$ and $\overline{Q} \subseteq \overline{R}$. We shall give explicitly the proof of $Q \subseteq \underline{R}$ only. This proof, however, may be converted into a proof of $\overline{Q} \subseteq \overline{R}$ by systematically replacing each occurrence of Q, R, and \overline{R} , and \overline{R} , and \overline{R} , and \overline{R} respectively.

We may assume that $\underline{R} < \infty$, since otherwise the inequality is trivial. We may also assume that $f(-1) \le 1$ and $f(1) \le 1$, since multiplying f by a positive constant affects neither the weak moment property nor the inequality to be proved. Letting $x = \pm 1$ in (0.1), we then have

$$f(\tau) \leq |\tau|^{\alpha}, \quad -\infty < \tau < \infty.$$

For any positive numbers s, t and ε , we have

(2.2)
$$Q_n(s) \leq \int_{A_n(\varepsilon,s,t)} f(S_n - c_n) + \int_{B_n(\varepsilon,t)} f(S_n - c_n)$$

where

$$A_n(\varepsilon, s, t) = \{ |S_n - c_n| > s, |S_n(t) - c_n| > \varepsilon |S'_n(t)| \},$$

$$B_n(\varepsilon, t) = \{ |S_n(t) - c_n| \le \varepsilon |S'_n(t)| \}.$$

Let p be an even integer greater than α . We first show that

(2.3)
$$\int_{A_n(\varepsilon,s,t)} f(S_n - c_n) \leq s^{\alpha - p} (1 + \varepsilon^{-1})^p E\{S_n(t) - c_n\}^p,$$
$$s \geq 1, \quad t > 0, \quad \varepsilon > 0.$$

Let $s \ge 1$. On the set $A_n(\varepsilon, s, t)$ we have $|S_n - c_n| > s \ge 1$, so on this set

$$f(S_n-c_n) \leq |S_n-c_n|^{\alpha} \leq s^{\alpha-p}(S_n-c_n)^p.$$

Moreover, on this set $|S'_n(t)| \le \varepsilon^{-1} |S_n(t) - c_n|$, and hence $|S_n - c_n| \le (1 + \varepsilon^{-1}) |S_n(t) - c_n|$. It follows that

$$f(S_n - c_n) \le s^{\alpha - p} (1 + \varepsilon^{-1})^p \{S_n(t) - c_n\}^p$$

on $A_n(\varepsilon, s, t)$, and (2.3) follows.

Let (ii) and (iii) of Lemma 1.3 hold for all $t > t_0$. We now show that

$$(2.4) \qquad \sup_{n\geq 1} E\{S_n(t)-c_n\}^p < \infty, \qquad t > t_0.$$

By (iii) of Lemma 1.3, to prove (2.4) it suffices to show that

$$(2.5) \qquad \sup_{n\geq 1} E\{S_n(t) - ES_n(t)\}^p < \infty, \qquad t > t_0.$$

We fix a value of $t > t_0$ and let $Y_{n,i} = X_{n,i}(t) - EX_{n,i}(t)$. Then $S_n(t) - ES_n(t) = \sum Y_{n,i}$, so by Lemma 1.2, to prove (2.5), it suffices to prove that

$$\sup_{n\geq 1}\sum |EY_{n,i}^k|<\infty \qquad \text{for each } k\geq 1.$$

When k=1, the inequality is clear. When k=2 it just asserts that $\sup_{n\geq 1} \operatorname{Var} S_n(t) < \infty$, which holds by hypothesis. If k>2, then as $|Y_{n,i}| < 2t$, we have

$$|EY_{n,i}^k| \le E|Y_{n,i}^k| \le (2t)^{k-2}EY_{n,i}^2$$

and the case k > 2 follows from the case k = 2.

From (2.4) we see that for any fixed values of $t > t_0$ and $\varepsilon > 0$, the right side of (2.3) is small uniformly in n when s is large, and from (2.2) we easily obtain

(2.6)
$$Q \leq \lim_{n \to \infty} \int_{B_n(\varepsilon, t)} f(S_n - c_n) \qquad t > t_0, \quad \varepsilon > 0.$$

As $|S_n(t) - c_n| \le \varepsilon |S'_n(t)|$ on $B_n(\varepsilon, t)$, we see from Lemma 1.1 (ii) that for $0 < \varepsilon < 1$,

$$\int_{B_n(\varepsilon,t)} f(S_n - c_n) \leq (1 + \varepsilon)^{\alpha} Ef\{S'_n(t)\}.$$

Taking $\underline{\lim}_{n\to\infty}$ of each side, applying (2.6), and then letting $\varepsilon\to 0$ and $t\to\infty$ yields

$$Q \leq \overline{\lim}_{t \to \infty} \underline{\lim}_{n \to \infty} Ef\{S'_n(t)\},$$

and it remains to show that

(2.7)
$$\overline{\lim_{t\to\infty}} \lim_{t\to\infty} Ef\{S'_{t}(t)\} \leq \underline{R}.$$

Let m be an integer satisfying $m \ge \alpha$. From Lemma 1.1 (i) and induction, we obtain for t > 0

$$f^{1/m}\{S'_n(t)\} \leq \sum f^{1/m}\{X'_{n,i}(t)\}$$

or

$$f\{S'_n(t)\} \leq \left[\sum f^{1/m}\{X'_{n,i}(t)\}\right]^m.$$

Hence by Lemma 1.2 (or trivially if $Ef\{X'_{n,i}(t)\} = \infty$ for some i)

(2.8)
$$Ef\{S'_n(t)\} \leq \sum Ef\{X'_{n,i}(t)\} + \psi_m \left[\max_{1 \leq k < m} \sum Ef^{k/m} \{X'_{n,i}(t)\} \right].$$

Now let M > 1. For any number $x \ge 0$ and for $1 \le k < m$

$$x^{k} \leq M^{k}I(0 < x < M) + M^{k-m}x^{m}I(x \geq M)$$

$$\leq M^{m-1}I(0 < x) + M^{-1}x^{m}.$$

Letting $x = f^{1/m} \{X'_{n,i}(t)\}\$, it follows that

$$f^{k/m}\{X'_{n,i}(t)\} \leq M^{m-1}I(|X_{n,i}| > t) + M^{-1}f\{X'_{n,i}(t)\}.$$

Taking expectations and summing yields

(2.9)
$$\sum Ef^{k/m}\{X'_{n,i}(t)\} \leq M^{m-1}\gamma(t) + M^{-1}\sum Ef\{X'_{n,i}(t)\},$$

where $\gamma(t) = \sup_{n \ge 1} \sum P\{|X_{n,i}| > t\}$. Now $\sum Ef\{X'_{n,i}(t)\} = R_n(t)$, so by (2.8) and (2.9)

$$Ef\{S'_n(t)\} \leq R_n(t) + \psi_m\{M^{m-1}\gamma(t) + M^{-1}R_n(t)\}.$$

From Lemma 1.3, $\gamma(t) \rightarrow 0$ as $t \rightarrow \infty$; it follows that

$$\overline{\lim_{t\to\infty}} \underline{\lim} Ef\{S'_n(t)\} \leq \underline{R} + \psi_m\{M^{-1}\underline{R}\}$$

for every M > 1, and (2.7) follows.

We now prove the remaining pair of inequalities $Q \ge R$ and $\bar{Q} \ge \bar{R}$. Fix $0 < \varepsilon < 1$, and let

$$M_{n} = \max \{ |X_{n,i}| : 1 \le i \le r_{n} \},$$

$$M_{n,i} = \max \{ |X_{n,j}| : 1 \le j \le r_{n}, j \ne i \},$$

$$A_{n,i}(t) = \{ |S_{n} - c_{n} - X_{n,i}| < \varepsilon t, M_{n,i} < t \},$$

$$B_{n,i}(t) = \{ |X_{n,i}| > t \} \cap A_{n,i}(t) \},$$

$$C_{n}(t) = \{ |S_{n} - c_{n}| < t, M_{n} < t \}.$$

We first prove the following chain of inequalities:

$$(2.10) Q_n\{(1-\varepsilon)t\} = \int_{|S_n-c_n|>(1-\varepsilon)t} f(S_n-c_n) \ge \int_{\cup B_{n,t}(t)} f(S_n-c_n)$$

$$(2.11) \qquad = \sum \int_{B_{n,i}(t)} f(S_n - c_n) \ge (1 - \varepsilon)^{\alpha} \sum \int_{B_{n,i}(t)} f(X_{n,i})$$

$$(2.12) \qquad = (1-\varepsilon)^{\alpha} \sum \left[P\{A_{n,i}(t)\} \int_{|X_{n,i}|>t} f(X_{n,i}) \right]$$

$$(2.13) \geq (1-\varepsilon)^{\alpha} P\{C_n(\varepsilon t/2)\} R_n(t).$$

On the set $B_{n,i}(t)$ we have $|S_n - c_n - X_{n,i}| < \varepsilon |X_{n,i}|$ and two applications of Lemma 1.1 (ii) yield

$$(2.14) f(S_n - c_n) \ge (1 - \varepsilon)^{\alpha} f(X_{n,i}) \text{on } B_{n,i}(t),$$

$$(2.15) |S_n - c_n| \ge (1 - \varepsilon) |X_{n,i}| \text{on } B_{n,i}(t).$$

Now $|X_{n,i}| > t$ on $B_{n,i}(t)$, so by (2.15) $|S_n - c_n| > (1 - \varepsilon)t$ on $\bigcup B_{n,i}(t)$, and the inequality of (2.10) follows.

The equality of (2.11) follows from the disjointness of the sets involved, while the inequality follows from (2.14). The equality (2.12) is a consequence of the independence of the sets $A_{n,i}(t)$ and $\{|X_{n,i}| > t\}$. The inequality (2.13) follows from the inclusion $A_{n,i}(t) \supset C_n(\varepsilon t/2)$.

From the convergence $S_n - c_n \stackrel{\mathcal{D}}{\longrightarrow} S$ and from Lemma 1.3 (i) it follows that for a fixed $0 < \varepsilon < 1$, $P\{C_n(\varepsilon t/2)\} \to 1$ as $t \to \infty$ uniformly in n; hence by (2.10)-(2.13), for any $0 < \varepsilon < 1$ there exists a number t_ε such that $Q_n\{(1 - \varepsilon)t\} \ge (1 - \varepsilon)^{\alpha+1}R_n(t)$ for all $n \ge 1$, $t > t_\varepsilon$, $0 < \varepsilon < 1$, and $Q \ge R$ and $\overline{Q} \ge \overline{R}$ follow readily. The proof of Theorem 0 is complete.

§3. Applications

In the following theorems, $S_n = \sum_{i=1}^n X_i$.

THEOREM 3.1. Let $\{X_i, i \ge 1\}$ be a sequence of independent random variables which are median-bounded, and let $S_n - c_n \to S$ a.s. Let f be a weak moment function, and let

$$\rho = \lim_{t \to \infty} \sum_{i=1}^{\infty} \int_{|X_i| > t} f(X_i).$$

If $\rho = 0$, then $Ef(S_n - c_n) \rightarrow Ef(S) < \infty$, and $Ef(S - S_n + c_n) \rightarrow 0$. If $\rho = \infty$, then $Ef(S_n - c_n) \rightarrow Ef(S) = \infty$.

REMARK. It is clear that ρ can only equal 0 or ∞ .

PROOF. We consider two arrays. It may be verified that Theorem 0 applies to each.

The first array is $\{X_{n,i} = X_i, 1 \le i \le n, n \ge 1\}$. Its *n*th row sum is the S_n defined above, so $S_n - c_n \stackrel{\mathcal{R}}{\to} S$. Computing the expression in (0.2), we see that R exists and equals ρ .

The second array is $\{X_{n,i}^*; 1 \le i \le 2, n \ge 1\}$, where $X_{n,1}^* = S_n - c_n$, $X_{n,2}^* = S_n - S_n + c_n$. Taking $c_n^* = 0$, we have $S_n^* - c_n^* = S$, $n \ge 1$. The expression corresponding to (0.2) is

(3.1)
$$R^* = \lim_{t \to \infty} \overline{\lim_{n \to \infty}} \left[\int_{|S_n - c_n| > t} f(S_n - c_n) + \int_{|S - S_n + c_n| > t} f(S - S_n + c_n) \right].$$

The following reasoning is supported by the conclusions of Theorem 0.

Suppose that $\rho = R = 0$. Then $Ef(S_n - c_n) \to Ef(S) < \infty$. We then trivially have $Ef(S_n^* - c_n^*) \to Ef(S) < \infty$ as well, and it follows that R^* exists and equals 0. In particular, $\lim_{t\to\infty} \overline{\lim_{n\to\infty}}$ of the second integral in (3.1) equals 0. Since $S - S_n + c_n \to 0$ a.s., it easily follows that $Ef(S - S_n + c_n) \to 0$.

Next suppose that $\rho = R = \infty$. Then $Ef(S_n - c_n) \to \infty$, and therefore $\lim_{t \to \infty} \underline{\lim}_{n \to \infty}$ of the first integral in (3.1) equals ∞ . It immediately follows that R^* exists and equals ∞ , and hence $Ef(S_n^* - c_n^*) \to \infty$, i.e., $Ef(S) = \infty$.

THEOREM 3.2. Let $\{X_i, i \ge 1\}$ be a sequence of independent, identically distributed random variables.

- (i) Let $0 < \alpha < 2$ and $E|X_i|^{\alpha} < \infty$. Then $E|n^{-1/\alpha}S_n|^{\alpha} \to 0$.
- (ii) Let $a_n > 0$ and b_n be constants such that $a_n^{-1}(S_n c_n) \stackrel{\mathscr{D}}{\to} S$, where S has a stable distribution of exponent $0 < \alpha \le 2$. Then for any $0 < \beta < \alpha$, $E |a_n^{-1}(S_n b_n)|^{\beta} \to E |S|^{\beta} < \infty$.

REMARK. A special case of (ii) was proved by Owen [3], who required normal attraction, i.e., $a_n = n^{1/\alpha}$,

- PROOF. (i) By Kolmogorov and Marcinkiewicz [2], $n^{-1/\alpha}S_n \to 0$ a.s. We may apply Theorem 0 to the array $\{X_{n,i} = n^{-1/\alpha}X_i; 1 \le i \le n, n \ge 1\}$, with $c_n = 0$ and $f(x) = |x|^{\alpha}$. The sum in (0.2) equals $\int |X_1|^{\alpha}I(|X_1| > tn^{1/\alpha})$. It immediately follows that R exists and equals 0, and the convergence follows.
- (ii) We apply Theorem 0 to the array $\{X_{n,i} = a_n^{-1}X_i; 1 \le i \le n, n \ge 1\}$ with $c_n = a_n^{-1}b_n$ and $f(x) = |x|^{\beta}$. Denoting the sum in (0.2) by $R_n(t)$, we have

$$R_n(t) = na_n^{-\beta} \int_{|x| > ta_n} |x|^{\beta} dF(x)$$

where F is the distribution function of X_1 . Let

$$\mu(t) = \int_{|x| \le t} x^2 dF(x).$$

From page 579 of [1], we have that for some c > 0

$$na_n^{-2}\mu(ta_n) \rightarrow ct^{2-\alpha}, \quad n \rightarrow \infty$$

and that

$$[s^{2-\beta}/\mu(s)]\int_{|x|>s}|x|^{\beta}dF(x)\rightarrow r, \qquad s\rightarrow\infty,$$

where $r = (\alpha - \beta)^{-1}(2 - \alpha)$. Replacing s by ta_n and multiplying together the two convergences yields

$$R_n(t) \to crt^{\beta-\alpha}, \qquad n \to \infty.$$

Letting $t \to \infty$ yields R = 0, and the convergence in (ii) follows.

REFERENCES

- 1. W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed., Wiley and Sons, 1971.
 - 2. M. Loeve, Probability Theory, 2nd ed., Van Nostrand, 1960.
- 3. W. Owen, An estimate for $E|S_n|$ for variables in the domain of normal attraction of a stable law of index α , $1 < \alpha < 2$. Ann. Probability 1 (1973), 1071–1073.
- 7, HARAKEFET ST.

AFRIDAR, ASHKELON, ISRAEL

Present Address
3708 W. 32ND St., Apt. 101
MINNEAPOLIS, MINNESOTA 55416 USA